Graph diameter in long-range percolation

نویسنده

  • Marek Biskup
چکیده

We study the asymptotic growth of the diameter of the graph obtained by adding sparse “long” edges to a square box in Z. We focus on the cases when an edge between x and y is added with probability decaying with their Euclidean distance like |x − y| as |x − y| → ∞. For s ∈ (d, 2d) we show that the graph diameter for a box of side L scales like (logL) where ∆ = log2(2d/s). In other words, the diameter grows about as fast as the graph distance between two “typical” points in the box.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-Range Percolation Mixing Time

We provide an estimate, sharp up to poly-logarithmic factors, of the asymptotically almost sure mixing time of the graph created by long-range percolation on the cycle of length N (Z/NZ). While it is known that the almost sure diameter drops from linear to poly-logarithmic as the exponent s decreases below 2 [4, 9], the almost sure mixing time drops from N only to N (up to poly-logarithmic fact...

متن کامل

The diameter of long-range percolation clusters on finite cycles

Bounds for the diameter and expansion of the graphs created by long-range percolation on the cycle Z/NZ, are given.

متن کامل

Cycle structure of percolation on high-dimensional tori

In the past years, many properties of the critical behavior of the largest connected components on the high-dimensional torus, such as their sizes and diameter, have been established. The order of magnitude of these quantities equals the one for percolation on the complete graph or Erdős-Rényi random graph, raising the question whether the scaling limits or the largest connected components, as ...

متن کامل

A lower bound for the chemical distance in sparse long-range percolation models

We consider long-range percolation in dimension d ≥ 1, where distinct sites x and y are connected with probability px,y ∈ [0, 1]. Assuming that px,y is translation invariant and that px,y = ‖x−y‖ −s+o(1) with s > 2d, we show that the graph distance is at least linear with the Euclidean distance.

متن کامل

Long Range Order and Giant Components of Quantum Random Graphs

Mean field quantum random graphs give a natural generalization of classical Erdős-Rényi percolation model on complete graph GN with p = β/N . Quantum case incorporates an additional parameter λ > 0, and the short-long range order transition should be studied in the (β, λ)-quarter plane. In this work we explicitly compute the corresponding critical curve γc, and derive results on two-point funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011